Postfix attachement filtering & PIKT

Keeping unwanted attachements out of your user's reach

What ?

Once upon a time, when we didn't have virus scanning installed on our MTA, we decided to
filter out Win32 executable attachments, so clueless users would be somehow protected again
the villains out there, and against other clueless users. We also didn't want our staff or users t
spread viruses to the rest of the world, destroying our sysadmin reputation.

As good BOFHs, we imposed a "no executables in mails" policy on our users, for inbound and
outbound mail through our MTA. After all, very few people really need to send out executable
attachments in mail, and if they really need to, they can still zip it.

How ?

As PIKT diehards, we of course wanted to use it for this task. We also wanted PIKT to report
mail abuse attemps (executable attachements mostly, but also relaying attempts and other us
errors reported by the MTA). So we used PIKT to create the Postfix 'body checks' file, which
is parsed by postfix at startup. When postfix receives a mail (from MUA or MTA), it tries to
match every single line of mail against the regular expressions in body checks.

Preliminary setup

In this document, we consider that postfix is set up to use body checks (check the postfix doc)
We also assume that postfix servers are members of the 'postfix servers' pikt group.

Defining unwanted extensions in attachments

Unwanted extensions are listed in an object file, RejectExtensions. All mail attached files havi
this extension will be rejected by postfix. You can customize this at your convenience, and
accroding to you local policy, to add for instance .doc, .xls, etc... to protect against
macro-virus.

#if postfix servers

RejectExtensions
au
bat
chm
cla
cmd
com
css
dll
dot
exe
hlp
hta
jse
Ink
ocx
pak
pif
pps
scr
sct
shs
src
vbe
vbs

1of6

vxd
wsh

#endif //postfix_server

RejectExtensions.cfg

Generating /etc/postfix/body_checks from
RejectExtensions

We then needed an alarm, run withing an alert run, to create the body checks file. Note that i
the alarm below, the body checks file is hardcoded. change it at will, or customize with a
macro.

#if postfix servers

GenBodyChecks
init
status active
level urgent
task "Generates postfix body checks rules"
input file "=objdir/RejectExtensions.obj"

dat $ext 1

begin
if #fopen(BC, "/etc/postfix/body checks", "w") == #err()
output mail "Unable to open /etc/postfix/body checks"
die "oops!"
endif

do #write(BC, "\#Pass-all rule")
// this rule protects agains PIKT Mail warning rejects
do #write(BC, "/=bypass tag/ OK")

rule
do #write(BC, "/"~begin(-base64)? [0-9]+.*(\\.]\=2E)".
$inline."(\?\=)?(\\.)?/ REJECT")
do #write(BC, "/~[" <I*(body|filename|name\=).*(\\.|\=2E).
$inline."(\\2\=)?(\\.)?/ REJECT")
end
do #fclose(BC)

#endif // postfix_servers

GenBodyChecks

This alarm will take each line of RejectExtensions object, and generate two lines body checks.
The first line handled uuencoded (eventually base64 ones) inlined attachments, and the secon
line the more frequent mime type attachments.

/"begin(-base64)? [0-9]+.*(\.|=2E)exe(\?=)?(\.)?/ REJECT

UUEncoded attachments match regexp (dot exe files

20of 6

/[<T*(body|filename|name=).*(\.|=2E)exe(\?=)?(\.)?/ REJECT

MIME attachments match regexp (dot exe files)

The alarm also add one special line at the top of body check. This line makes the matching
process jump out and accept the current mail message line (the 'OK' at the end of the rule
instead of the usual 'REJECT"). This is a pure hack done because PIKT reporting mails
(described below) should match those body checks regexps. Since PIKT is reporting
executable attachement attemps and giving a lot of details, it's reporting messages were
matched by postfix and bounced back. Rather painful, and loop prone. To circumvent this just
define a 'bypass tag' macro in your macro.cfg file. PIKT will thus generate an 'OK' match
against that macro and send postfix attachment denial reports with that tag on the line. You s!
make that tag rather secure, since the tag knowledge would allow an attacker to craft mail
messages in such ways that postfix wouldn't match them. It's appearance in mail messages sh
also be very unlikely, especially in mail messages with attachments you want to filter ! So avoi
'exe' for instance. Also, that tag shouldn't be titanesque, since it will appear at the front of eve
line reporting an invalid attachment attempt.

The value used here is just for the purpose.

/PASS/ OK

Pass all rule (choose carefully)

At that stage, postfix has all it needs to reject 'bad' mail.
Now on to reporting stuff.

Reporting mail abnormal events

The alarm below will check the postfix 'maillog' for abnormal events. Actually, four events are
checked for : forbidden attachment attempt, header check match, relaying attempt and unknc
recipients. There is also a fifth 'unclassified error' category, which encompass errors we
couldn't categorize above. Note the macros defined below.

PostfixRejects
init
status active
level urgent
task "Check if postfix rejected some mail"
input log "=maillog"

begin
// to ensure input source
exec wait "=touch =maillog"

set #rej _count["Attachements"] = 0
set #rej _count["Recipient"] = 0

set #rej _count["Relay"] = 0

set #rej count["Header"] =0

set #rej count["Unclassified"] = 0
set $rej["Attachements"] = ""

set $rej["Recipient"] = ""

set $rej["Relay"] = ""
set $rej["Header"] =
set $rej["Unclassified"] = ""

rule

30f6

/l/ Check for attachements
=postfix checkfor("Attachements",
"*reject: body .*name=(.*); from=<(.*¥)> to=<(.*)>",
"=Dbypass tag $2 tried to send a suspicious attachement ($1) to $3")
/// Check for unknown recipients
=postfix checkfor("Recipient",
"*reject: RCPT from (.*): 550 <(.*)>: User unknown; from=<(.*)> to=<(.*)>
"=bypass tag $3 tried to mail non-existent $4/$2 from $1")
/!l Check for relay attempts
=postfix checkfor("Relay",
"*reject: RCPT from (.*): 554 <(.¥)>:*from=<(*)> to=<(.¥)>",
"=bypass tag $3 tried to relay thru =pikthostname to $4/$2 from $1")
/// Check for mail rejected by header rules (/etc/postfix/header checks
=postfix checkfor("Header",
"*: reject: header (.*¥)",
"=Dbypass tag header checks on =pikthostname rejected this mail: $1")
/// check for mail rejectected for some other reason
=postfix checkfor("Unclassified",
"*: reject: ((¥)",
"=bypass tag =pikthostname rejected the following unclassified mail: $1")

end

// We report problems
=postfix reportfor("Attachements",
"/M\".$fixed(#rej count["Attachements"]).
"Suspicious attachements rejected")
=postfix reportfor("Recipient",
"/@\\ ".$fixed(#rej count["Recipient"]).
"Non-existent recipient in enveloppes")
=postfix reportfor("Relay",
"N\ ".$fixed(#rej_count["Relay"]).
"Relay attempts")
=postfix reportfor("Header",
"N\ ".$fixed(#rej _count["Header"]).
"Rejected by headers")
=postfix reportfor("Unclassified",
"I2\\".$fixed(#rej count["Unclassified"]).
"Unclassified problems")

#endif // postfix_servers

PostfixRejects : reports postfix rejected mail

\'4

#if postfix_servers

bypass tag PASS

postfix _checkfor(T, R, M) // (T) is type,(R) is regexp,(M) is message
if $inlin =~ (R)
set $rej[(T)] .= (M).$newline()
=incr(#rej count[(T)])
next
endif

postfix reportfor(T, M) // (T) is type, (M) is message
if $rej[(T)] ne ""
output mail (M).$newline()
output mail $rej[(T)]
endif

4 of 6

Scheduling the stuff

Here are the two alerts used to schedule body checks generation and maillog file scruting.
Note that GenerateBodyChecks has '=piktnever' timing, because it is intended to be run
manually.

#if postfix_servers

GenerateBodyChecks
timing =piktnever
alarms GenBodyChecks

#endif //postfix_servers

GenerateBodyChecks : executing GenBodyChecks alarm

#if postfix_servers
MailAbuse
timing 20% * * * *
mailcmd "=mailx -s 'PIKT Alert: MailAbuse on =pikthostname (PIKT)'
mblanc@erasme.org dlacroix@erasme.org"

alarms
PostfixRejects

#endif

MailAbuse : executing PostfixRejects alarm

That's it. Those scripts should solve most of your unwanted attachments problems. They can b
improved a lot, and if you do so, please send us what you've done (mblanc at erasme dot org).

What you get

Here is the kind of mail you can expect from pikt parsing the log file.

Subject: /!\ MailAbuse on smtp.site.org (PIKT)
Date: Fri, 8 Feb 2002 15:01:08 +0100 (CET)
From: root@smtp.site.org (root)

To: sysadmin@site.org

PIKT ALERT
Fri Feb 8 15:01:08 2002
maill
URGENT:
PostfixRejects

Check if postfix rejected some mail
/!\ Suspicious attachements rejected
PASS badguy@somewhere.com tried to

send a suspicious attachement(test.exe)
to sysadmin@site.org

50f6

/@\ Non-existent recipient in enveloppes

001d99c@kylmedia.fi tried to mail
non-existent
werner@site.org/werner@site.org from
unknown[192.192.192.192]
usager32@site.org tried to mail
non-existent
usager@site.org/usager@site.org from
poste32.al.lan[192.168.101.32]

/"\ Rejected by headers

header checks on smtp.site.org
rejected this mail: header Received:
from somemta.there.fr
(somemta.there.fr
[192.192.192.192])??by smtp.site.org
(Postfix) with ESMTP id
6A8B71700D0??for ; Fri, 8 Feb 2002
14:16:04 +0100 (CET); from= to=

PIKT report about rejected mail

Caveats

These scripts may not encompass all your needs, nor even fit any of them. Read them carefull;
before using them, especially the body_checks regexps part. Those regexps might (read : will)
match and bounce legitimate mails, or let in supposed-to-be bounced ones.

It happened here; those regexps are the result of a trial-error loop process. That process is
certainly not complete. Those scripts are not meant to replace a good anti-virus product, but
since viruses are here to make a living for AV vendors, you might not feel like buying one. (no,
didn't say AV vendors are themselves creating the viruses they fight :).

Notes

In the code above, lines may be broken for readability and convenience.

References

* PIKT, Robert Osterlund,http://pikt.org

* MIME (Multipurpose Internet Mail Extensions) PartBOmmstein, Freed,
http://www.fags.org/rfcs/rfc1521.html

e MIME (Multipurpose Internet Mail Extensions) PartRlvéoore,
http://www.fags.org/rfcs/rfc1522.html

* Postfix Wietse Venemahttp://www.postfix.org

Michel Blanc <mblanc at erasme dot org>
$Revision: 1.4 $ - $Date: 2002/02/19 15:28:24 $

6 of 6

